A bijection between 2-triangulations and pairs of non-crossing Dyck paths
نویسنده
چکیده
A k-triangulation of a convex polygon is a maximal set of diagonals so that no k + 1 of them mutually cross in their interiors. We present a bijection between 2-triangulations of a convex n-gon and pairs of non-crossing Dyck paths of length 2(n−4). This gives a bijective proof of a recent result of Jonsson for the case k = 2. We obtain the bijection by constructing isomorphic generating trees for the sets of 2-triangulations and pairs of non-crossing Dyck paths. Résumé. Une k-triangulation d’un polygone convexe est un ensemble maximal de diagonales tel qu’il n’y ai pas k +1 diagonales qui se croisent mutuellement en leurs intérieurs. Nous présentons une bijection entre les 2-triangulations d’un n-gon convexe et paires de chemins de Dyck de longeur 2(n−4) qui ne se croisent pas. Ceci donne une preuve bijective d’un résultat de Jonsson pour le cas k = 2. Nous obtenons cette bijection en construisant arbres générateurs isomorphes aux ensembles de 2-triangulations ainsi qu’aux paires de chemins de Dyck qui ne se croisent pas.
منابع مشابه
Another bijection between 2-triangulations and pairs of non-crossing Dyck paths
A k-triangulation of the n-gon is a maximal set of diagonals of the n-gon containing no subset of k + 1 mutually crossing diagonals. The number of k-triangulations of the n-gon, determined by Jakob Jonsson, is equal to a k×k Hankel determinant of Catalan numbers. This determinant is also equal to the number of k non-crossing Dyck paths of semi-length n− 2k. This brings up the problem of finding...
متن کاملEnumeration of 1- and 2-crossing Partitions with Refinements
An enumeration of the 1-crossing partitions of [n] into k blocks by bijection with ordered trees with n edges, k internal nodes, and root degree j = 4 is presented. A semi-bijection of these ordered trees to Dyck paths of semilength n, k peaks, and j = 4 last peak height is used to derive a conjectured formula for the number of 1-crossing partitions of [n] with k blocks. We also explore some na...
متن کاملMaximal Fillings of Moon Polyominoes, Simplicial Complexes, and Schubert Polynomials
We exhibit a canonical connection between maximal (0, 1)-fillings of a moon polyomino avoiding north-east chains of a given length and reduced pipe dreams of a certain permutation. Following this approach we show that the simplicial complex of such maximal fillings is a vertex-decomposable, and thus shellable, sphere. In particular, this implies a positivity result for Schubert polynomials. Mor...
متن کاملPairs of noncrossing free Dyck paths and noncrossing partitions
Using the bijection between partitions and vacillating tableaux, we establish a correspondence between pairs of noncrossing free Dyck paths of length 2n and noncrossing partitions of [2n + 1] with n + 1 blocks. In terms of the number of up steps at odd positions, we find a characterization of Dyck paths constructed from pairs of noncrossing free Dyck paths by using the Labelle merging algorithm.
متن کاملBijective counting of plane bipolar orientations and Schnyder woods
A bijection Φ is presented between plane bipolar orientations with prescribed numbers of vertices and faces, and non-intersecting triples of upright lattice paths with prescribed extremities. This yields a combinatorial proof of the following formula due to R. Baxter for the number Θij of plane bipolar orientations with i non-polar vertices and j inner faces: Θij = 2 (i+ j)! (i+ j + 1)! (i + j ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 114 شماره
صفحات -
تاریخ انتشار 2007